ریاضیات و سرگرمی

مطالب نجومی و مطالب ریاضی و آهنگ و عکس عاشقانه و ...

ریاضیات و سرگرمی

مطالب نجومی و مطالب ریاضی و آهنگ و عکس عاشقانه و ...

اصول مکانیک کوانتومی

دلایل ظهور مکانیک کوانتومی
بررسی ساختار اتمی به این نتیجه منجر می شود که رفتار الکترونها در اتم را نظیر رفتار فوتونها ، نمی توان با قوانین فیزیک کلاسیک یعنی قوانینی که در آزمایش با اجسام ماکروسکوپی ثابت می شوند، توضیح داد. وجود ترازهای انرژی گسسته در لایه های الکترونی اتم و قواعد حاکم بر انتقال بین ترازها و پر شدن این حالتهای انرژی را نیز نمی توان با بکارگیری مفاهیم قراردادی مکانیک و قوانین الکترومغناطیس توجیه کرد.

نظریه دوبروی در مکانیک کوانتومی
قدم مهم در روشن شدن تناقضات بین مکانیک کلاسیک و مکانیک کوانتومی توسط دوبروی فیزیکدان فرانسوی برداشته شد. ایشان کسی بود که این تفکر را که نه تنها فوتونها بلکه تمام ذرات دارای خواص موجی هستند، پیشنهاد و اثبات کرد. این خواص با قوانین کلاسیکی قابل بیان نیستند، ولی نقش مهمی در پدیده های اتمی بازی می کنند.

معلوم شده است که کوانتوم تابش الکترومغناطیسی ، یعنی فوتونها ، با اندازه حرکت P=E/C مشخص می شوند. در ضمن موج نوری با فرکانس ν دارای طول موج λ=ν/C است.با حذف فرکانس از این رابطه ها ،رابطه بین طول موج و اندازه حرکت فوتون به دست می آید. λ=h/P در صورتی که خواص فوتونها و سایر ذرات همان گونه که با فرضیه دوگانگی موج و ذره پیش بینی شد، واقعا نظیر هم باشند.

این رابطه باید برای هر ذره کاربرد داشته باشد. به این طریق ، فرمول طول موج دوبروی به دست آمد. طول موج دوبروی به ذره ای با اندازه حرکت P برای بیان خواص موجی آن نسبت داده می شود. اگر سرعت ذره ای با جرم سکون m در مقایسه با سرعت نور کم باشد، فرمول طول موج دوبروی را می توان به صورت زیر نوشت. λ=h/mv

مبنای تجربی دیدگاه موجی ذرات
اعتبار نظریه دوبروی با آزمایش پراکندگی الکترونی در بلورها تایید شد. قبلا ، شبیه این آزمایش ، آزمایش پراکندگی اشعه ایکس در بلورها برای اثبات ماهیت موجی اشعه ایکس استفاده شده بود. بر اثر تداخل فیزیک امواج ثانویه گسیلی از اتم های بلور که آرایش منظم دارند، پراکندگی به جای تمام جهات فقط با زاویه معین نسبت به باریکه تابشی روی می دهد. علاوه بر نقطه مرکزی حاصل از باریکه مستقیم ، حلقه هایی نیز از تابش پراکنده شده (پراش یافته) روی فیلم عکاسی واقع در پشت بلور ، پراکنده می شود.

معلوم شده است که اگر بلور به جای اشعه ایکس با الکترونها بمباران شود، الکترونهای پراکنده شده نیز روی فیلم عکاسی دسته حلقه هایی همانند حلقه های ایجاد شده توسط اشعه ایکس تشکیل می دهند. به این ترتیب می توانیم بپذیریم که الکترونها تداخل می کنند، یعنی دارای خواص موجی هستند. بعدها پدیده های پراش برای سایر ذرات ، یعنی اتمها ، مولکولها و نوترونها نیز مشاهده شد.

این آزمایش ها به طور انکار ناپذیری ثابت کردند که در بعضی از پدیده ها ، ریز ذرات همانند امواج رفتار می کنند. همچنین این آزمایش ها به دانشمندان امکان تعیین طول موجی را دادند که برای بیان پراش ذره باید به آن نسبت داده شود. نتایج تجربی حاصل برای طول موج با مقدار حاصل از فرمول دوبروی توافق کامل داشتند. بنابرین ، معلوم گردید که طول موج با عکس حاصلضرب جرم ذره در سرعت آن mv متناسب بوده و ضریب تناسب همان ثابت پلانک است. ثابت پلانک بسیار کوچک h=6.6x10-34 j.s است.

طول موج دوبروی وابسته به موج مادی
چون ثابت پلانک بسیار کوچک است به همین علت طول موج دو بروی برای ذره ای با جرم محسوس ، خیلی کوچک و در حد ، قابل اغماض است. مطابق فرمول دو بروی ، یک ذره خاک با جرم حدود میکروگرم ( 9-10 کیلوگرم ) که با سرعت 1Cm/s در حرکت است دارای طول موج
λ=6.6x10-34/(10-11)6.6x10-23 m است. این مقدار حتی در مقایسه با ابعاد اتمی نیز تا حد قابل اغماض کوچک است. برای اتمها و الکترونها با جرمی بسیار کوچکتر از میکروگرم وضعیت متفاوتی پیش می آید. در سرعتهای معمولی ، طول موج وابسته به آنها در حدود طول موج پرتوهای ایکس است. برای مثال در مورد اتم هلیم با انرژی 0.04 ev (انرژی حرکت گرمایی در اتاق) ،
λ=0.7x10-10 m و برای الکترون با انرژی 13.5ev طول موج دوبروی برابر λ=3.3x10-10 m است.

با توجه به قوانین و مفاهیم نورشناسی نتیجه می گیریم، ماهیت موجی نور وقتی به وضوح آشکار می شود که طول موجها با ابعاد اجسامی که نور با آنها اندرکنش می کند قابل مقایسه باشد. برای مثال وقتی نور از روزنه ای می گذرد که ابعاد آن چند برابر طول موج است، یا وقتی از توری پراشی بازتابیده می شود که ثابت توری آن کوچک است، از خواص موجی نور می توان صرف نظر کرد. زیرا عملا غیر قابل ملاحظه اند.

همین طور خواص موجی ذرات فقط وقتی مهمند که طول موج دوبروی در مقایسه با ابعاد اجسامی که اندرکنش با آنها صورت می گیرد، کوچک نباشد. هنگام اندرکنش اتمها با الکترونها یا با ریز ذرات دیگری که برای آن ها طول موج دوبروی در حدود ابعاد اتمی است، خواص موجی ذرات نقش مهم و گاهی تعیین کننده دارند. هر گاه فرایندها وابسته به رفتار الکترونها در اتمها یا مولکولها باشد، این نقش مهمتر است.

زمینه ظهور مکانیک کوانتومی
وقتی که ذرات با ابعاد ماکروسکوپی اندرکنش می کنند، ذراتی که برای آنها طول موج دوبروی تقریبا 9-10 برابر ابعاد آنهاست، خواص موجی نباید در نظر گرفته شود. به همین علت مکانیک کلاسیک که قوانین آن از بررسیهای اجسام بزرگ به دست می آید و خواص موجی اجسام هرگز به حساب نمی آید، نمی تواند پدیده های مربوط به این ذرات را بررسی نماید. مکانیک کلاسیک در مسائل مربوط به حرکت اجرام آسمانی ، قطعات ماشینها و غیره نتایج خوبی به دست می دهد. اما درست به همین دلیل مکانیک کلاسیک برای توجی

اصول مکانیک کوانتومی

دلایل ظهور مکانیک کوانتومی
بررسی ساختار اتمی به این نتیجه منجر می شود که رفتار الکترونها در اتم را نظیر رفتار فوتونها ، نمی توان با قوانین فیزیک کلاسیک یعنی قوانینی که در آزمایش با اجسام ماکروسکوپی ثابت می شوند، توضیح داد. وجود ترازهای انرژی گسسته در لایه های الکترونی اتم و قواعد حاکم بر انتقال بین ترازها و پر شدن این حالتهای انرژی را نیز نمی توان با بکارگیری مفاهیم قراردادی مکانیک و قوانین الکترومغناطیس توجیه کرد.

نظریه دوبروی در مکانیک کوانتومی
قدم مهم در روشن شدن تناقضات بین مکانیک کلاسیک و مکانیک کوانتومی توسط دوبروی فیزیکدان فرانسوی برداشته شد. ایشان کسی بود که این تفکر را که نه تنها فوتونها بلکه تمام ذرات دارای خواص موجی هستند، پیشنهاد و اثبات کرد. این خواص با قوانین کلاسیکی قابل بیان نیستند، ولی نقش مهمی در پدیده های اتمی بازی می کنند.

معلوم شده است که کوانتوم تابش الکترومغناطیسی ، یعنی فوتونها ، با اندازه حرکت P=E/C مشخص می شوند. در ضمن موج نوری با فرکانس ν دارای طول موج λ=ν/C است.با حذف فرکانس از این رابطه ها ،رابطه بین طول موج و اندازه حرکت فوتون به دست می آید. λ=h/P در صورتی که خواص فوتونها و سایر ذرات همان گونه که با فرضیه دوگانگی موج و ذره پیش بینی شد، واقعا نظیر هم باشند.

این رابطه باید برای هر ذره کاربرد داشته باشد. به این طریق ، فرمول طول موج دوبروی به دست آمد. طول موج دوبروی به ذره ای با اندازه حرکت P برای بیان خواص موجی آن نسبت داده می شود. اگر سرعت ذره ای با جرم سکون m در مقایسه با سرعت نور کم باشد، فرمول طول موج دوبروی را می توان به صورت زیر نوشت. λ=h/mv

مبنای تجربی دیدگاه موجی ذرات
اعتبار نظریه دوبروی با آزمایش پراکندگی الکترونی در بلورها تایید شد. قبلا ، شبیه این آزمایش ، آزمایش پراکندگی اشعه ایکس در بلورها برای اثبات ماهیت موجی اشعه ایکس استفاده شده بود. بر اثر تداخل فیزیک امواج ثانویه گسیلی از اتم های بلور که آرایش منظم دارند، پراکندگی به جای تمام جهات فقط با زاویه معین نسبت به باریکه تابشی روی می دهد. علاوه بر نقطه مرکزی حاصل از باریکه مستقیم ، حلقه هایی نیز از تابش پراکنده شده (پراش یافته) روی فیلم عکاسی واقع در پشت بلور ، پراکنده می شود.

معلوم شده است که اگر بلور به جای اشعه ایکس با الکترونها بمباران شود، الکترونهای پراکنده شده نیز روی فیلم عکاسی دسته حلقه هایی همانند حلقه های ایجاد شده توسط اشعه ایکس تشکیل می دهند. به این ترتیب می توانیم بپذیریم که الکترونها تداخل می کنند، یعنی دارای خواص موجی هستند. بعدها پدیده های پراش برای سایر ذرات ، یعنی اتمها ، مولکولها و نوترونها نیز مشاهده شد.

این آزمایش ها به طور انکار ناپذیری ثابت کردند که در بعضی از پدیده ها ، ریز ذرات همانند امواج رفتار می کنند. همچنین این آزمایش ها به دانشمندان امکان تعیین طول موجی را دادند که برای بیان پراش ذره باید به آن نسبت داده شود. نتایج تجربی حاصل برای طول موج با مقدار حاصل از فرمول دوبروی توافق کامل داشتند. بنابرین ، معلوم گردید که طول موج با عکس حاصلضرب جرم ذره در سرعت آن mv متناسب بوده و ضریب تناسب همان ثابت پلانک است. ثابت پلانک بسیار کوچک h=6.6x10-34 j.s است.

طول موج دوبروی وابسته به موج مادی
چون ثابت پلانک بسیار کوچک است به همین علت طول موج دو بروی برای ذره ای با جرم محسوس ، خیلی کوچک و در حد ، قابل اغماض است. مطابق فرمول دو بروی ، یک ذره خاک با جرم حدود میکروگرم ( 9-10 کیلوگرم ) که با سرعت 1Cm/s در حرکت است دارای طول موج
λ=6.6x10-34/(10-11)6.6x10-23 m است. این مقدار حتی در مقایسه با ابعاد اتمی نیز تا حد قابل اغماض کوچک است. برای اتمها و الکترونها با جرمی بسیار کوچکتر از میکروگرم وضعیت متفاوتی پیش می آید. در سرعتهای معمولی ، طول موج وابسته به آنها در حدود طول موج پرتوهای ایکس است. برای مثال در مورد اتم هلیم با انرژی 0.04 ev (انرژی حرکت گرمایی در اتاق) ،
λ=0.7x10-10 m و برای الکترون با انرژی 13.5ev طول موج دوبروی برابر λ=3.3x10-10 m است.

با توجه به قوانین و مفاهیم نورشناسی نتیجه می گیریم، ماهیت موجی نور وقتی به وضوح آشکار می شود که طول موجها با ابعاد اجسامی که نور با آنها اندرکنش می کند قابل مقایسه باشد. برای مثال وقتی نور از روزنه ای می گذرد که ابعاد آن چند برابر طول موج است، یا وقتی از توری پراشی بازتابیده می شود که ثابت توری آن کوچک است، از خواص موجی نور می توان صرف نظر کرد. زیرا عملا غیر قابل ملاحظه اند.

همین طور خواص موجی ذرات فقط وقتی مهمند که طول موج دوبروی در مقایسه با ابعاد اجسامی که اندرکنش با آنها صورت می گیرد، کوچک نباشد. هنگام اندرکنش اتمها با الکترونها یا با ریز ذرات دیگری که برای آن ها طول موج دوبروی در حدود ابعاد اتمی است، خواص موجی ذرات نقش مهم و گاهی تعیین کننده دارند. هر گاه فرایندها وابسته به رفتار الکترونها در اتمها یا مولکولها باشد، این نقش مهمتر است.

زمینه ظهور مکانیک کوانتومی
وقتی که ذرات با ابعاد ماکروسکوپی اندرکنش می کنند، ذراتی که برای آنها طول موج دوبروی تقریبا 9-10 برابر ابعاد آنهاست، خواص موجی نباید در نظر گرفته شود. به همین علت مکانیک کلاسیک که قوانین آن از بررسیهای اجسام بزرگ به دست می آید و خواص موجی اجسام هرگز به حساب نمی آید، نمی تواند پدیده های مربوط به این ذرات را بررسی نماید. مکانیک کلاسیک در مسائل مربوط به حرکت اجرام آسمانی ، قطعات ماشینها و غیره نتایج خوبی به دست می دهد. اما درست به همین دلیل مکانیک کلاسیک برای توجی

چگونه اخترشناسان قادر به دیدن اشعه ی ایکس هستند؟

گرچه اشعه ایکس انرژی بسیار زیادی برای نفوذ دارد اما اتمسفر زمین به اندازه ی کافی برای رد نشدن اشعه ی ایکس ضخیم است و مانع از رد شدن آنها می شود و تنها اجازه می دهد تا 10 سانتیمتر از این پرتو در هوا نفوذ کند حال ما برای اینکه این پرتو را دریافت نمائیم چاره ای به جز تحقیقات در بالای جو نداریم . با توجه به این محدودیت ما 4 روش برای مطالعه بر روی اشعه ی ایکس پیش رو داریم ...

1: فرستادن موشک اکتشاف تغییرات جوی یا sunding rocket

2: فرستان بالون ها

3: فرستادن ساتالایت ها

4: تلسکوپ های فرو سرخ

موشک اکتشاف تغییرات جوی (sunding rocket)

در این راکت اکتشاف گر ردیاب اشعه ایکس در دماغه یا نوک راکت قرار می گیرد این همان روش است که در سال 1949 در نیو مکزیکو اجرا شد که اولین این پرتو های دریافتی مربوط به خورشید می شد در سال 1962 اولین نشانه ها از پرتو ایکس غیر از خورشید تائید شد و از آنجا بود که دانشمندان توجه شان معطوف به این شد که آیا ممکن است که این پرتو این همه راه را آمده باشد بدون اینکه منحرف شده باشد؟

حال دیگر دانشمندان به این فکر افتادند که تا به حال داشته اند شمال زمین را به دنبال اشعه ایکس می گشتند حال آنکه ممکن بود درصد وجود پرتو ایکس در جنوب بیشتر می بود و دانشمندان مجبور بودند برای هر طرف زمین یک راکت را روانه ی آسمان کنند تا شاید بتوانند این پرتو را رصد کنند ولی این کار هزینه ی زیادی را در بر داشت به همین دلیلی دانشمندان به فکر افتادند تا از بالون ها استفاده کنند ...

بالون های اکتشافی

مزیت بالونهای اکتشافی این بود که می توانستند تجهیزات بیشتری برای مطالعه به همراه خود به بالای 35 کیلومتری زمین ببرند و در آنجا تحقیق را آغاز کنند و مزیت بالونها این بود که می توانستند زمان بیشتری در بالا بمانند و تحقیق کنند و مانند راکت ها نبودند که تا چند دقیقه بیشتر نمی توانستند اطلاعات جمع آوری نمایند تنها ضعفی که این بالون ها داشتند این بود که اشعه های ایکسی را جمع آوری می کردند که دیگر قابل مطالعه نبودند چرا که با وجود اینکه بالونها تا فاصله زیادی بالا رفته بودند ولی اشعه های ایکس تا آن فاصله دیگر نمی توانستند خود را برسانند و ضعیف می شدند به این دلیل بود که دانشمندان به این فکر افتادند که یک شئی بسازند که هم بتواند مدت زمان زیادی در فضا بماند هم بتواند گردش کند و هم بتواند تجهیزات مختلفی با خود ببرد از این جا بود که طرح ساتالایت ها ریخته شد...

ساتالایت ها

همان طور که گفته شد بالون ها فقط قادر به رصد طول موجها و طیف های ناقصی از پرتو ها بودند اما ساتالایت ها می توانستند این طول موجها را به صورت کامل دریافت نمایند و مورد مطالعه قرار دهند به علاوه ساتالایت ها می توانستند زمان زیادی در فضا باشند و به دور زمین بچرخند به عنوان مثال ساتالایت veta 5B توانست برای 10 سال در خارج از جو روی این پرتو ها و پرتوهای دیگر مطالعه نماید ....

حال دیگر فرصت آن رسیده تا با استفاده از تلسکوپ های فرو سرخ به مطالعه ی این پرتو های مرموز که از ماورای ما می آیند بپردازیم.

تلسکوپ های فرو سرخ

این تلسکوپ ها می توانند با استفاده از اشعه های فرو سرخ که می توانند از غبارو گاز عبور کنند به راحتی منابع اشعه ایکس را کشف کنند نه اینکه اشعه ایکس دریافت کنند فرضا تلسکوپ اسپیتزر که در بالای جو قرار دارد(برای رصد بهتر) می تواند سیاه چاله ها یی را که از خود فوران اشعه ایکس دارند را به راحتی شناسایی و رصد کند.

توجه داشته باشید که این تلسکوپ ها هم می توانند در زمین باشند هم در جو .

تلاش برای دیدن سایه سیاهچاله

به گفته اخترشناسان طی چند سال آینده میتوان سایه کلی سیاهچاله واقع در مرکز کهکشان راه شیری را مشاهده کرد.

در هسته کهکشان راه شیری یک سیاهچاله پرجرم قرار دارد که نور را به درون خود می مکد و بدین ترتیب باعث نامرئی شدن خود می شود. اما اختر شناسان می گویند که طی چند سال آینده قادر خواهند شد سایه کلی این سیاهچاله را مشاهده کنند.

آوری برادریک (Avery Broderick) از مرکز اختر فیزیک هاروارد می گوید" کلید و اساس اختر شناسی سیاهچاله ای اکنون در چنگ ماست. ما اکنون می توانیم سایه ای که سیاهچاله بر روی مواد اطراف خود می اندازد مشاهده کرده و اندازه و چرخش خود سیاهچاله را تعیین کنیم.هیچ چیز حتی نور نمی تواند از حوزه گرانشی شدید یک سیاه چاله فرار کند. و به دلیل اینکه از خود نور یا هر گونه شکلی از ماده منتشر نمی کند ، مدرک قابل روئیتی از وجود آنها در دست نیست. اما همینکه ماده به داخل کشیده می شود ، گرم شده و انرژی را به صورت "نقاط داغ" (Hot Spots) منتشر می کند. بخشی از این تابش فرار کرده و قابل ردیابی می گردد. اختر شناسان قبلا تابش ناشی از نقاط داغ را درست بیرون از سیاهچاله ردیابی کرده اند. آنها عقیده دارند که این تابشها پس زمینه ای را ترسیم می کند که شناسه و به عبارت دیگر سایه سیاهچاله بر روی آن خودنمائی می کند.به دلیل اینکه فن آوری جهت روئیت این سایه تا چند سال آینده امکان پذیر نخواهد بود ، برادریک و آویل اوب از مرکز اختر فیزیک هاروارد مدلی را طراحی کرده اند که ظاهر این سایه را پیش بینی می کند.

نقطه داغ تابش به دور سیاهچاله می چرخد اما محققین نمی دانند که آیا خود سیاهچاله هم می چرخد یا نه. بنابراین Broderick و Loeb دو حالت را ایجاد کردند : یکی سیاهچاله بدون حرکت و دیگری چرخش با حداکثر سرعت. در هر کدام از حالتها ، نقطه داغ بصورت یک حباب با رنگهای رنگین کمانی که به دور یک صفحه آبی سخت می چرخد نمایش داده می شود. صفحه آبی نمایانگر صفحه پیوسته سیاهچاله است که ماده در آن جمع و داغ می شود تا در نهایت به درون خود سیاه چاله مکیده شود.برادریک می گوید" مشاهده تمام وقایع تا لبه سیاهچاله واقع در مرکز کهکشان راه شیری یک رصد واقعا قابل ملاحظه است: چاله ای با قطر 10 میلیون مایل که بیش از 25.000 سال نوری دور می باشد. بمنظور روئیت این سایه ، اختر شناسان به رادیو تلسکوپی نیاز دارند که به بزرگی کره زمین باشد. یک چنین تلسکوپی کما بیش درتحقیقات استفاده می شود. به جای رادیو تلسکوپی که اندازه غول آسای آن امکان ساخت را غیر ممکن می کند ، اختر شناسان قرائتهای مجموعه ای از تلسکوپهای submillimeter سراسر قاره را ادغام خواهند کرد.

قبلا از این روش که interferometry نامیده می شود برای مطالعه پرتوها و علائم طول موج بلند فضای خارج استفاده شده است. اختر شناسان معتقدند که بررسی علائم طول موج کوتاه می تواند تصاویری با کیفیت بالا از ناحیه بیرونی سیاهچاله ایجاد کند. چاه گرانشی موجود در مرکز کهکشان راه شیری بهترین هدف برای رصد با استفاده از interferometry می باشد زیرا این روش وسیع ترین منطقه از آسمان را برای رصد سیاهچاله پوشش می دهد. ادغام نتایج رصدهای انجام شده توسط ابزارهای فروسرخ می تواند تصویر با کیفیت تری بوجود آورد.لینکولن گرین هیل (Lincoln Greenhill) از مرکز اختر فیزیک هاروارد می گوید: رصدهای فرو سرخ و Submillimeter مکمل یکدیگر هستند. ما می باید هر دو روش را برای بوجود آوردن با کیفیت ترین رصدها مورد استفاده قرار دهیم. این تنها راهی است که بتوان یک تصویر کامل از مرکز کهکشانی بدست آورد." اما یک تصویر واضح و شفاف از این سیاهچاله تنها حسن شناسائی و رویت سایه آن نیست. این داده ها در نهایت به اختر شناسان کمک خواهد کرد تا فرضیه نسبیت عام انیشتین را در میان میدان گرانشی شدیدا قدرتمند یک سیاهچاله مورد آزمایش قرار دهند.زمانیکه اختر شناسان به این هدف نایل شوند ، اولین تصویر از سایه سیاهچاله و صفحه یکنواخت درون آن به کتابهای درسی راه خواهد یافت و نظریات ما در مورد گرانش گستره فضا- زمان که قویا منحنی تصور می شود مورد آزمایش قرار خواهند گرفت.